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Probability of Helicobacter pylori infection based on
IgG levels and other covariates using a mixture model

RM PFEIFFER, MH GAIL and LM BROWN
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Background To use IgG antibody measurements to detect
infection with Helicobacter pylori (H. pylori), one typ-
ically defines a cut-off value based on samples of per-
sons presumed to be infected or uninfected. When there

-are no good ‘gold standard’ tests to determine infection
status, or when laboratory conditions vary, it is useful to
have a method based on the IgG measurements them-
selves to-determine infection status.

Methods We present a two component mixture model to
analyse serologic data on H. pylori infection. The mix-
ing proportions correspond to the probability that a
latent variable, the true, unknown infection status I of a
person, is either O (uninfected) or 1 (infected). By using
a logistic model for these probabilities, we are able to
incorporate covariate information.

Results The model is applied to IgG data from Shandong,

China. The distribution of the true infection status given
the IgG value and a set of covariates is calculated using
the IgG distribution function. An optimal cut-off point
is found by minimising the probability of misclassifica-
tion for the Shandong data. The optimal cut-off point is
slightly lower than the pre-defined one.

Conclusions We conirast results from the mixture model
with results from tabulations and from standard logistic
regression that are based on fixed cut-points. The mix-
ture model yields information on the probability that a
person is truly infected as a function of IgG levels and
covariates. In our data, the mixture model indicates that
a slightly lower cut-off value than the pre-defined cut-
point 1.0 can reduce misclassification rates.

Keywords Helicobacter pylori, mixture model, logistic
regression, sensitivity, specificity.

Introduction

We are interested in quantifying the effects of factors that
influence the prevalence of H. pylori infection in Linqu
County, Shandong Province, China. The initial study
population consisted of a nearly exhaustive census of
3411 subjects aged 35-69 from 13 randomly selected vil-
lages in Linqu. For each subject, H. pylori IgG antibody
concentrations were measured using an enzyme-linked
immunoassay (ELISA) procedure in-1994. In addition to
the optical density measurements of IgG, covariate infor-
mation on each person was obtained by questionnaire.
Our analysis is based on the 3101 subjects with IgG
measurements and complete questionnaire data. We use
IgG to denote either the antibody class or the actual anti-
body optical-density measurements.

Standard statistical approaches to investigating fac-
tors that affect the prevalence of H. pylori infection,
such as contingency table analyses and logistic regres-
sion, employ an operational definition of ‘infected’,
namely that the IgG optical density exceed a given cut-
off value. Based on IgG data from samples of verified

infectees and from very probably uninfected children,

the cut-off point IgG = 1.0 has been used for the classifi-

cation ‘infected’!. However, the measurement of optical
density is sensitive to slight changes in the laboratory
procedure. Thus relying on a fixed cut-off value may
affect the misclassification rate. For example, if the
proper threshold value were 1.2 instead of 1.0, the
derived prevalence would decrease from 65.8% .to
63.9% in our data.

In this paper we analyse the data by fitting a two-
component mixture model to a properly chosen transfor-
mation of the IgG measurements. The probability of
being in one state or the other, namely the true, unob-
servable infection status, is modelled by a logistic
regression that allows us to incorporate the covariate
information. Our approach resembles that of Thompson
et al.?, who applied mixture models to the diagnosis of
diabetes based on plasma glucose level. We think that
the application to H. pylori presented here is interesting
in its own right and that it illustrates a technique that
may be useful to epidemiologists.
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The mixture model approach has several potential
advantages. First, we need not rely on an external defin-
ition of a cut-off value to classify each observation. Sec-
ond, the continuous nature of the IgG data is used to its
full extent and we obtain a complete description of the
distribution of the IgG values in the presence of the
covariates. This enables us to calculate P(infectedl/gG,
7), the probability of being truly infected given the IgG
reading and a set of covariates z.

We define the logistic mixture model formally and
briefly review the methods of inference for the model.
We then present the results of applying the mixture
model to the Shandong data. We compare those results
with results obtained from contingency tables and logis-
tic regression, P(X = 1lz) = exp(z’/BM1 + exp(zB)l,
based on observations of X = I(IgG = 1.0), where I, the
indicator function, is one if the argument is true and
zero otherwise. In the last section we comment on the
strengths and weaknesses of the mixture model method.

Model formulation and estimation

Mixture models (see References 3 and 4 for good intro-
ductions) were developed as a way of analysing data
that arise from two or more distinct data-generation
processes. The two component logistic mixture model
we consider in this paper was motivated by the histo-
gram of transformed IgG values, In(IgG + 0.5), shown
in Figure 1. This histogram suggests a mixture of two
densities, the one to the right corresponding to the IgG
values of infected individuals and the one to the left cor-
responding to 1gG values of uninfected subjects. We
characterise the logistic mixture model as follows. The
data consist of the pairs (Yj, z) forj =1,..., n where YJ
denotes the observed IgG measurement and z, a p X 1
covariate vector for the j-th person in the study. Each
person is in one of two latent true infection states, which
we label as state [, = 1 (‘infected’) and state I/ =0
(‘uninfected’). The state probabilities for the j-th obser-
vation depend on z; through a logistic regression:

(@ B)

PIL=11z]=p(z; ) = @ B

The first component of Z is unity and corresponds to an
intercept. Given z, the probability density function of ¥
is given by the mixture model: '

¢(12,0) = f(y:0,) - (1= p(zBN +f ) p(f) (1)

where f{,&0) is a parametric density function, such as the
normal density and 8 = (@, @, B). We interpret f{.,0ty) to
be the density of the IgG values (or a known transforma-
tion of the IgG values) that corresponds to persons in the

‘uninfected’ state and f(.,a) to be the density of the IgG
values that corresponds to subjects in the ‘infected” state.

A more general model would allow f(.,&) and fa)
to depend on covariates?. Among the variables we con-
sider (see below, Model selection and comparison of the
mixture and logistic models), the only covariate that
might plausibly influence antibody concentration condi-
tional on latent infection status is age. Using the extended
model? and allowing for separate age effects among
infected and uninfected subgroups, we regressed the
means of the mixture densities on age. The age effects
were small and not statistically significant, we therefore
assume that the distribution of the IgG level for given
infection status does not depend on any covariates, as in
equation (1).

The density of the In(IgG, + 0.5) values correspond-
ing to the ‘infected” state is the component density with
the larger mean in Figure 1. The density component
with the smaller mean corresponds to In(IgG + 0.5) for
the ‘uninfected’ state. The symmetric densities in the
histogram of the transformed data y, = In(IgG, + 0.5) are
suggestive of a mixture of two normal densities. We
chose this transformation to render the component dens-
ities approximately normal. Formal tests (see below)
suggest that the mixed normal model based on this
transformation fits the data adequately. Although the
component densities are affected by transformations of
y, the mixing proportion p(z;B) is not.

Thus, the full parametric model we use is given by (1)
where y = In(IgG + 0.5) and f denotes the normal density
with mean 4, and variance gb%c, for infection status k = 0
or 1. In the next section we apply the model stated in (1)
to the H. pylori data-set. For comparison, we also study
the case of no covariates, namely a standard mixture
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Fig. 1 Histogram of In(IgG + 0.5).
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model with constant state probabilities, P[Ij =1]=p,or,
using the logistic parameterisation,

PlL =1]=exp(f3)) / [1 + exp(B)].

We use the EM algorithm to find maximum likelihood
estimates for ¢, &, and . The EM algorithm is an itera-
tive procedure to find maximum likelihood estimates in
problems with missing or unobserved data’, In this
instance the unobserved quantity is the latent infection
status, or its indicator 1. The algorithm is used to max-
imise the log likelihood given by

2 log g(yiz; 0).

The implementation and interpretation of the EM algo-
rithm in the context of mixture models has been dis-
cussed by several authors>*®, The derivation of the
algorithm for logistic mixtures such as equation (1) is
given in detail elsewhere’-?. We note that the maximisa-
tion step in the EM procedure is often easy to perform.
In particular, if the component densities are from an
exponential family (e.g. normal, Poisson, beta, bino-
mial), many statistical software packages will perform
the M-step through a generalised linear model regres-
sion routine that accepts the E-step estimates 1 — p(z; )
and p(z; B) as weights. In our model the component
densities are normal and do not depend on covariates;
we therefore obtained closed-form solutions for the
mean and variance estimates of the component densities
in the M-step, which makes EM particularly simple.

If (Yj , Zj)'are independent and identically distributed
and under mild conditions on f(.,&0), the maximum like-
lihood estimate, 6 , has an asymptotic normal distribu-
tion and satisfies:

(6 — 6" —NO,0

where 6° = (o, &}, B") denotes the true parameters and

_ | 9log g(ylz; ©) & log g(ylz; 6) ]
Q=£ [ 96 90 ’ ‘

To get the needed variances, we approximated the
information matrix Q by

[ 9logg(y]z;6) 9logg(y|z;60)
5 — .

0=

s =

Alternatively, O can be approximated by

= l n
Ql nz_,‘:lf‘lj’

where H, denotes the negative Hessian of log g(YjIzj;O)
obtained through numerical differentiation at 6. In smaller
samples O may be preferable, but in our example
QA" and Q gave nearly identical results.

Results

Model selection and comparison of the mixture and
logistic models

The covariates z = (2 b z6) we considered are: z,= 1,
an intercept term; z, = ‘hands washed’, in four ordered
categories: always (0), more than half the time (1), less
than half the time (2), never (3); z, = ‘age’, in three cat-
egories: < 44 years (0), 45-54 years (1), = 55 years (2);
7, = ‘total number of children in the household’, in three
categories, 0, 1, 2 (more than one child); 7= ‘water
source’, in three ordered categories, deep private well
(1), shallow private well or deep village well (2), other
sources (3); and z,= ‘smoking’, no (0) , yes (1).

Of the 3411 subjects in the study 3101 had com-
plete data on IgG measurements and all the covariates.
Fifty-four subjects had missing IgG values, 213 had
completely-missing covariate information and 133 had
partially-missing covariate information. We examined
subjects with missing data to determine if they were
similar to those with complete data, conditional on the
covariates included in the model. For those with only
IgG and age data, the IgG distribution was similar with-
in age group to the IgG distribution for the subjects with
complete data. Similar results were obtained for those
with IgG and ‘total number of children in the house-
hold’ and for those with completely missing covariate
information. Those with missing values seemed to be
similar to those with complete data within categories
included in later models, we therefore felt justified in
confining our analysis to the 3101 subjects with com-
plete data. '

In Table 1 we present point estimates and standard
errors (in parentheses) for several models. The columns
headed LM1 and LM2 correspond respectively to results
for logistic mixtures with the full covariate vector and
with covariates z, and z, omitted. The CM column
denotes the mixture with constant state probabilities (i.e.
no covariates except Z,). ‘logit 1’ and ‘logit 2’ corre-
spond respectively to logistic regression of X = I(IgG =
1.0) on a full covariate vector and on the vector with z,
and z, omitted.

The saturated model with six logistic parameters had
log-likelihood —2863.9 which only decreased to
—2865.4 when the two covariates with non-significant
Wald tests, z,and z,, were eliminated (see LM2 in Table
1). This change in log-likelihood corresponds to a non-
significant y? value of 3.0 on two degrees of freedom
(p = 0.22). Thus, we use the logistic model LM2 in




270 RM PFEIFFER, MH GAIL and LM BROWN

Table 1 Three mixture models for In (IgG + 0.6) and two logistic models for the event IgG = 1.0

LMlb' :

" Parameter  CM® LM2P o logit1e o ogit2
4 1214100006 12132(00096)  12131(0.009) NAY  NA
g, 039720007 03981(0.0073) 039820007 NA . NA
g, —0.2061(0.0083) 02062 (0.0083) 0206900083  NA . NA
02423 (0.0080)  02417(00080) 02417(0008) ~  NA~ . NA
0704200403 07167(0.0408) 0715200407 0.6631(0.0381)  0.6615(0.0380)

. 004260038D)
~ —00755 (0.0391)
0.0706 (0.0389

a CM denotes the mixture with constant state probabilities (i.e. no covariates except z -

b Columns LM and LM2 correspond respectively to results for logistic mixtures with the full covariate vector and with covariates z, and z,

omitted.

¢ “logit 1° and ‘logit 2° correspond respectively to logistic regression of X = I (IgG=1.0) ona full covariate vector and on the vector with z, and z,

omitted.

INA = not available.

subsequent analyses. The model CM has log likelihood
—2879.9, which corresponds to a )(2 of 29.0 on three
degrees of freedom (p = 2 +107%). Thus there is evidence
that the probability of being infected depends on z,, z,
and z, .

The standard logistic model, logit 1, indicates that the
variables z,, z,, z, and 7, are needed to predict X = I(IgG
= 1.0), but that z, and z, are not needed (sece logit 2,
Table 1). Hence, the analyses based on the mixture and
the logistic models lead to the same selection of covari-
ates for predicting infection status. These findings are
consistent with the literature®. The number of children
in the household is a measure of over-crowding that has
been consistently related to H. pylori infection. Subjects
who obtain their water from wells that are more apt to
be contaminated with material containing H. pylori have
been found to be at higher risk of infection. Age has a
slightly protective effect in this population, as some pre-
viously infected individuals may suffer atrophic change
in gastric mucosa, creating an inhospitable environment
for H. pylori®.

The coefficients in the logistic regression model P(X
= 1lz) = exp(z’BY[1 + exp(z’P)] have a different inter-
pretation than the parameters B in the mixture model. In
the mixture model the logistic probability corresponds
to the probability of the true, unobservable infection sta-
tus, I, whereas in the standard logistic regression the
probability of the observable event X = I(IgG = 1.0) is
estimated. If the operational definition of infection, IgG

> 1.0, coincided perfectly with the ‘true’ latent state I =
1, then the mixture and' logistic models would yield
identical prediction of infection status, and the estimates
of B, would be equal, apart from random variation. In
fact, the estimates for LM2 and logit 2 are not drastic-
ally different, but they are not identical. For example,
LM?2 indicates that a change from water source 1 to
water source 2 is associated with an increase in the odds
of I = 1 of exp(0.1767) = 1.19, whereas logit 2 indicates
that the corresponding increase in the odds of IgG = 1.0
is exp(0.1605) = 1.17.

Both models give very similar prediction of P(IgG =
1.01z) (see asterisks in Figure 2). Whereas such predic-
tions based on the logit 2 model are immediate, to com-
pute P(IgG = 1.0) from LM2, one needs to integrate
equation (1). The crosses in Figure 2 depict estimates of
P(I = 1iz) from LM2 plotted against estimates of P(IgG
= 1.0lz) from logit 2 for various choices of z. This plot
indicates that the former tends to exceed the latter. If the
assumptions underlying the logistic mixture model are
correct, this analysis suggests that the operational defin-
ition, IgG = 1.0, slightly under-estimates the proportion
infected. The unconditional estimate of P( = 1) =
0.6698 from LM2 is obtained as X, P( = 1]2)P(2),
where P(z) is the observed proportion of the population
at covariate level z. The proportion truly infected is esti-
mated from CM as 0.6690, in very close agreement.
Both these estimates of P(I = 1) exceed the observed
proportion with IgG = 1.0, namely 0.6582 = 2041/3101.
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These calculations suggest that the cut-off value of IgG
> 1.0 is slightly too high.

Similar conclusions can be drawn from Table 2. The
entries in Table 2 are P(IgG > 1.0lz) from LM2 and logit
2 respectively and P(I = llz) from LM2 (in parenthesis)
for all possible combinations of the covariates. Note that
P(IgG = 1.01z) estimated from LM2 is very close to the
estimate obtained from logit 2. In contrast, the estimate
of P(I = llz) from LM2 consistently exceeds the esti-
mates of P(IgG = 1.0lz). It is also apparent from Table 2
that water source (z;) has a greater impact on the proba-
bility of infection, judged by either P(IgG > 1.0Iz) or by
P(I = liz) than does age (z,), or number of children in
the household (z,).

We find that cut-off value c* for IgG that minimises
the probability of misclassification if the estimated
latent mixture model is true. To determine ¢* we min-
imise the probability of misclassification:

[L=PU=D] [foiody + PU=D) [* f:a,)dy, (2)

where the &, i = 0,1 and P(/ = 1) are replaced by their
estimates. The optimal cut-off point for the above critex-
ion under the mixture model is ¢* = 0.87 (after trans-
forming back to the original IgG scale), with a
probability of misclassification of 0.013; the cut-off
point of ¢ = 1.0 (that corresponds to a cut-off point of
0.405 on the transformed scale) yields a misclassifica-
tion probability of 0.016. Using the new cut-off point,
we classify 2061 of the 3101 subjects as infected; the
corresponding number based on IgG = 1.0 is 2041.
Though the change in the cut-off value may seem sub-

stantial, only 20/3101 = 0.65% of the population are

classified differently. To obtain the variance of the cut-
off point we performed a bootstrap with 500 repetitions
by resampling the (¥, z) data. The mean value for the
bootstrap repetitions is 0.8796 and the 95% confidence
interval (CI) based on the bootstrap sample standard

0.80
* = P(IgG >=1.0iz)
+=P(I=112)
g o075 -
—
o
(o]
3 0.70 -
[72]
«
O
£ 065
>
(%1
(0]
T 0.60 |
1 1

0.60 0.65 0.70 0.75
P(lgG > = 1.0Iz) from logistic regression logit 2

Fig. 2 Plots of estimates of P(IgG = 1.0\z) and P(I = 1z) from
the mixture model LM2 against the estimate of P(IgG > 1.0lz)
Sfrom the standard logistic model, logir2, for various choices of
covariates. The solid line denotes the equiangular line, ordi-
nate = abscissa.

deviation is (0.740, 1.034). Thus, the pre-defined cut-off
point of 1.0 falls just within the CL

To maximise the sum of specificity and sensitivity,
we find the value ¢* that maximises

[ sty + [ osa)d.

This yields a cut-off value of (.95 and a classification of
2047/3101 individuals as infected. Thus both optimality
criteria result in cut-off values for IgG < 1.0. The corre-

sponding bootstrap CI is (0.846-1.122) which also-

includes the pre-defined cut-off point.
The logistic mixture :‘model gives a more complete

description of the IgG data than the standard logistic

model, which only predicts the proportion with IgG >
1.0. For example, for z = (z,, z,, 7, z;) (1, 2,0, 2), the
estimated density of IgG agrees well with the observed
histogram of In(/gG + 0.5) values (Figure 3). It is also

Table 2 Estimates of P (IgG = 1.0 | z) from LM2 and logit 2 respectively, followed by an estimate of P(J = 1 | z) from LM2 (in
parenthesis) )

i e e
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Frequencies

In(lgG+.5)

Fig. 3 Fitted density from the mixture model LM2 and
observed histogram forz = (1, 2, 0, 2).

possible to predict the density and distribution of IgG
for any subset of fixed covariates. To study water source
(zs), for example, we calculate:

gylz) = 2 g(ylz, z, z5) P (2, 2,1z

Zyly

where g(y12) = [1-p@:B)] f (6P + P@P) f o,
gbl), and P(z,, z,lz,) is estimated from the corresponding
sample frequency. The corresponding probability distrib-
ution functions are obtained by integrating g(ylz,). The
distribution functions for In(IgG + 0.5) are shown for
water sources 1,2, and 3 in Figure 4. In particular, the
distribution functions give the probabilities P(IgG =
1.0lwater source) = P(In(JgG + 0.5) = 0.4055 |water
source), which are indicated by a vertical bar in Figure
4. The ordinal values in Figure 4 yield the proportions
PlIn(IgG + 0.5) = 0.4055lwater source = 1] = 0.6518,
P[In(JgG + 0.5) = 0.4055Iwater source = 2] = 0.7068,
and P[ln(IgG + 0.5) = 0.4055lwater source = 3] =
0.7559.

A nice feature of the logistic mixture model is its
ability to calculate the probability of I= 1 given z and Y,
= ]n(lng+ 0.5). Indeed, from (1) we get

Pz By My D)
(=p@:B) oty Pp) + PEiB) fO ity D)

Pl =1b2)=

For 7 =(1,0,0,1) and z = (1,0,0,3), P(Ij = llyj, zj) rises
rapidly in the region 0.2< In(/gG + 0.5) (see Figure 5).
The optimal cut-off for minimising equation (2) when
discriminating IJ =1 from IJ =0, is to select Ij =1if P(Ij
=1y, z) = 05,and I, = 0 otherwise. From Figure 5, the
optimal cut-off values are In(/gG + 0.5) = 0.3 and 0.35
respectively, for z,= 3 and 1. These values correspond to
IgG values of 0.85 and 0.92 respectively, rather than 1.0.

1.0
—— water source = 1
—— water source = 2
0.8 |~ .- water source =3

Estimate of P[In(IgG+0.5]< y)

In(1gG+.5)

Fig. 4 Estimates of the cumulative distribution function of
In(IgG + 0.5) from the mixture model LM2 for water source
zs = 1, 2 and 3. The vertical line corresponds to the cut-off
IgG = 1.0.

1.0

— 2=(1,0,0,1)

o8 L — z=(10,03)

0.6

P(infection | IgG, z)

00 73 1 1 i 1 1 |

04 02 00 02 04 06 0.8 -
in(lgG+.5)

Fig. 5 Estimates of P(I = llz, IgG) from the logistic mixture
model LM2 forz = (1,0, 0, 1) and for z = (1, 0, 0, 3).

Although these differences are not dramatic, they illus-
trate the fact that one might wish to use different cut-off
values to predict an individual’s true infection status,
depending on his or her covariate values.

Goodness-of-fit

To test the goodness-of-fit of the logistic mixture model,
we compared the observed proportions with IgG = 1.0
with predicted proportions (Table 3).

The upper number in each cell of Table 3 is the
observed number. of subjects with IgG = 1.0 (out of
the total number of subjects in the cell). The numbers
in the next two rows are expected counts of IgG = 1.0
based on LM2 and logit 2 respectively, and the number
in the last row of each cell is the estimated count with
I =1, based on LM2.

We used as the goodness-of-fit criterion the sum over
the 21 non-empty cells in Table 3 of n(ﬁo—ﬁ)zlﬁ(l—ﬁ)
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where p_ is the observed proportion with IgG 2 1.0, n is
the number of observations, and p is the proportion esti-
mated to have IgG = 1.0 in a cell under the mixture
model, LM2. This criterion is the sum over the cells of
the Pearson 2 for the two binomial outcomes in each
cell and has degrees of freedom equal to the number of
non-empty cells minus the number of fitted parameters.
For LM2, the Pearson )(2 is 18.2609 on 21 — 8 = 13
degrees of freedom, which indicates adequate fit @ =
0.15). The fit can also be assessed informally by com-
paring observed and predicted distributions of In(IgG +
0.5) for various values of z. For example, for z = (1, 2,
0, 2), the predicted density seems to fit the observed histo-
gram well (see Figure 3). Formal procedures are avail-
able to assess the fit of a distribution function to the
empirical distribution function when the parameters are
estimated!?, but this approach is not pursued here.

Data in Table 3 with p predicted from the logistic
model yield a y? of 18.1885 with 21 — 4 = 17 degrees
of freedom (p = 0.38). Thus the logistic model fits well.
A more refined examination of the distribution of IgG is
not possible for the logistic model, which only predicts
P(IgG =2 1.0Iz).

Discussion

In this paper we use a two component mixture model to
analyse serologic data on H. pylori infection. The stated
probabilities correspond to the probability that a latent
variable, the true, unknown infection status / of a per-
son, is either 0 (uninfected) or 1 (infected). By using a
logistic model for those probabilities, we are able to
incorporate covariate information. The results obtained
from the mixture model are compared with the results
obtained from tables and from a standard logistic regres-
sion applied to the data X = I(IgG 2 1.0).

The standard logistic model and the mixture model fit
the data very well, agree in the selection of the impor-
tant covariates z,, z, and z, and agree in predicting
P(IgG = 1.01z). However, estimates of P(I = 1.0lz) tend
to exceed P(IgG = 1.0lz), suggesting that a slightly
lower cut-off value would be appropriate for these data.
Using plots like Figure 2, or tabulations, such as Table
2, it is possible to search for covariate combination§
with huge discrepancies between P(I = 1.0lz) and P(X =
1.01z); such an examination might suggest covariate pat-
terns for which the usual cut-off value is misleading. In
the present example, the discrepancies were quite
regular though somewhat larger for persons using public
surface water sources (z,= 3) and households with more
than one child (z, = 2). These discrepancies could be
explained largely by a simple calibration problem that
suggests the need for a slightly lower cut-off point.

The mixture model analysis suggests, however, that

the prespecified cut-off value 1.0 works quite well in
these data. In particular, prevalence estimates are affected
very little by lowering the cut-off point to 0.87, the esti-
mated optimal cut-off value from the mixture model
LM2, and the confidence interval on the estimated
optimal cut-off, (0.74,1.03), includes the pre-specified
cut-off 1.0.

Thompson et al.? use a similar mixture model for glu-
cose levels to diagnose diabetes in the presence of
covariates. Their paper also illustrates the use of the
mixture method to find an appropriate cut-off point
when there is no ‘gold standard’ of discase status.
Thompson et al. allowed for the incorporation of covari-
ates in the component densities in the prediction of
latent disease status; their model is thus slightly more
general than the model presented in this paper. For
example, Thompson et al. found obesity to be a good
predictor of glucose levels among those thought to be
diabetic, but not among those thought not to be diabetic.
Although this generalisation can yield valuable insights
and, potentially, improve model fit, it was unnecessary
for our problem, because the covariates considered were
thought to influence the chance of being infected, but
not the IgG distributions conditional on infection status.
When we used age as a predictor of density means in the
more general model, the corresponding estimated age
effects were small and not statistically significant. Thus,
the more general model was not needed in our case.

The main advantage of the mixture approach is that
an a priori classification of the observations into an
infected and uninfected group based on a cut-off point is
unnecessary. A complete set of covariate-specific prob-
ability distributions of the IgG values is also obtained.
Using the 1gG distribution function, P(/, = 1 Olyz) can
be calculated and provides additional 1ns1ght mto the
relationship between the unobservable infection status
and the observable IgG measurement of a person in the
presence of the covariates. Moreover, it may be more
realistic to estimate the probability of infection as a
function of IgG, rather than assert that the subject is
infected or not based on a single cut-point. :

A weakness of this latent mixture model is that it

" depends on parametric assumptions and that the estima-

tion procedures are more complex than standard logistic
regression, as the parameters of the component densities
have to be estimated. We have indicated some ways to
test goodness-of-fit, and in our example the fit appears
to be quite good. Further work would be ‘useful to test
sensitivity of the results to departure from the paramet-
ric assumptions and to extend the model to mixtures
with nonparametric densities. The MATLAB 5.0 pro-

gram used to analyse these data is available on request

from the first author.
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